

April 23, 2015

Arkansas Department of Environmental Quality Water Enforcement Branch 5301 Northshore Drive North Little Rock, AR 72118-5317

RE: NPDES Permit AR0000752 Discharge Monitoring Report for period ending March 31, 2015.

Enclosed you will find the Discharge Monitoring Reports ending March, 2015. The DMR's for Outfall 010-A were entered on the blank DMR forms provided by Amy Schluterman, ADEQ Water Enforcement.

If you have any questions regarding this report, please contact Edward L Pearson at (870) 863-1400.

Sincerely,

Edward L Pearson

Environmental Technician

Enclosures

NON-COMPLIANCE REPORT

Facility Name:

El Dorado Chemical Company

Permit Number:

AR0000752

AFIN:

70-00040

Month / Year:

Mar-15

Type of Violation	Permit Limit	Date of Violation	Cause of Violation	Corrective Action or Other Narrative
Outfall 003 Coliform,fecal general daily Max(4600 col/100ml)	2000 col/100 ml Daily Max	1/8/2015	Unknown	EDCC has added nitrification bacteria on a weekly basis to promote bacteria growth within the Imhoff system.
Outfall 006/Zinc Monthly Average (630 ug/L)	115.62 ug/L Monthly Average	3/2/2015	Unknown	EDCC has land applied pelletized lime in the area of outfall 006 in an effort to promote vegetative cover.
Outfall 006 /Zinc Daily Max (630 ug/L)	231.99 ug/L. Daily Max	3/2/2015	Unknown	EDCC has land applied pelletized lime in the area of outfall 006 in an effort to promote vegetative cover.
Outfall 006 / Lead Monthly Average (64 ug/L)	3.8 ug/L Monthly Average	3/2/2015	Unknown	EDCC has land applied pelletized lime in the area of outfall 006 in an effort to promote vegetative cover.
Outfall 006 / Lead Daily Max. (64 ug/L)	7.62 ug/L Dally Max.	3/2/2015	Unknown	EDCC has land applied pelietized lime in the area of outfall 006 in an effort to promote vegetative cover.
Outfall 006 TDS Monthly Average (700 mg/L)	291 mg/L Monthly Average	3/2/2015	Unknown	EDCC has land applied pelletized lime in the area of outfall 007 in an effort to promote vegetative cover.
Outfall 006 TDS Daily Max (700 mg/L)	436.5 mg/L Daily Max	3/2/2015	Unknown	EDCC has land applied pelletized lime in the area of outfall 007 in an effort to promote vegetative cover.
Outfall 007 / Zinc Monthly Average (550 ug/L)	115.62 ug/L Monthly Average	3/2/2015	Unknown	EDCC has land applied pelletized lime in the area of outfall 007 in an effort to promote vegetative cover.
Outfall 007 / Zinc Daily Max(550 ug/L)	231.99 ug/L Daily Max	3/2/2015	Unknown	EDCC has land applied pelletized lime in the area of outfall 007 in an effort to promote vegetative cover.
Outfall 007 / Lead Monthly Average (6.40 ug/L)	3.8 ug/L Monthly Average	3/2/2015	Unknown	EDCC has land applied pelletized lime in the area of outfall 007 in an effort to promote vegetative cover.
Outfall 007 / TDS Monthly Average (460 mg/L)	291 mg/L Monthly Average	3/2/2015	Unknown	EDCC has land applied pelletized lime in the area of outfall 007 in an effort to promote vegetative cover.
Outfall 007/TDS Daily Max(460 mg/L)	436.5 mg/L Daily Max	3/2/2015		EDCC has land applied pelletized lime in the area of outfall 007 in an effort to promote vegetative cover.
AM WITH THE INFO THOSE INDIVIDUALS IN BELIEVE THE SUBMI AWARE THAT TH INFORMATION, INCL	ER PENALTY OF LAW THA RMATION SUBMITTED HER MMEDIATELY RESPONSIBITED INFORMATION IS THE REARE SIGNIFICANT PEUDING THE POSSIBILITY (U.S.C. 1319. (Penalties und	REIN; AND BASED O LE FOR OBTAINING ' LUE, ACCURATE AND ENALTIES FOR SUBN OF FINE AND IMPRIS	N MY INQUIRY OF THE INFORMATION, I D COMPLETE. I AM MITTING FALSE SONMENT. SEE 18	Sheg Withm 4/22/15

\$10,000 and or maximum imprisonment of between 6 months and 5 years.)

Signature / Date

Bio-Analytical Laboratories (BAL) ADEQ#88-0630 Project X5680

Bio-Analytical Laboratories' Executive Summary

Permittee: El Dorado Chemical Company

P.O. Box 231

El Dorado, AR 71731

Project #: X5680

Outfall: Outfall 006 (contaminated storm water)

Permit #: AR0000752/ AFIN #70-00040

Contact: Mr. David Sartain
Test Dates: March 3 - 5, 2015

Test Type: 48-hour acute toxicity test using *Pimephales promelas* (EPA 2000.0).

48-hour acute toxicity test using Daphnia pulex (EPA 2021.0)

Results:

For Pimephales promelas:

- 1. If the NOEC for survival is less than the critical dilution (100.0%), enter a "1"; otherwise, enter a "0" for Parameter No. TEM6C- 0- Pass.
- 2. Report the NOEC for survival, Parameter TOM6C 100.0%.
- 3. Report the highest (critical dilution or control) Coefficient of Variation, Parameter TQM6C 6.06%.

For Daphnia pulex:

- 1. If the NOEC for survival is less than the critical dilution (100.0%), enter a "1"; otherwise, enter a "0" for Parameter No. TEM3D-0 Pass.
- 2. Report the NOEC for survival, Parameter TOM3D -100.0%.
- 3.Report the highest (critical dilution or control) Coefficient of Variation, Parameter TQM3D 0.00%.
- -Due to lack of available neonates, an abbreviated daphnid test was conducted.

This report contains a total of 31 pages, including this page. The results pertain only to the samples listed in the chain of custody documents in Appendix A. The information contained within meets the requirements set forth by ADEQ. The chemical data in this report is for monitoring purposes only and should not be reported on discharge monitoring reports.

Bio-Analytical Laboratories

3240 Spurgin Road Post Office Box 527 Doyline, LA 71023 (318) 745-2772 1-800-259-1246 Fax: (318) 745-2773

THE RESULTS OF TWO 48-HOUR ACUTE TOXICITY TESTS FOR OUTFALL 006 AT

EL DORADO CHEMICAL COMPANY El Dorado, Arkansas

> NPDES #AR0000752 AFIN #70-00040

EPA Methods 2000.0 and 2021.0

Project X5680

Test Dates: March 3 - 5, 2015 Report Date: April 8, 2015

Prepared for:

Mr. David Sartain El Dorado Chemical Company P.O. Box 231 El Dorado, AR 71731 Prepared by:

Ginger Briggs Bio-Analytical Laboratories P.O. Box 527 Doyline, LA 71023 ADEQ #88-0630

TABLE OF CONTENTS

1.0 Introduction	4
2.0 Methods and Materials	4
2.1 Test Methods	4
2.2 Test Organisms	4
2.3 Dilution Water	5
2.4 Test Concentrations	5
2.5 Sample Collection	5
2.6 Sample Preparation	5
2.7 Monitoring of the Tests	5
2.8 Data Analysis	5
3.0 Results and Discussion	6
4.0 Conclusions	7
5.0 References	8
Appendices	
A- Chain-of-Custody Documents	9
B- Raw Data Sheets	11
C- Statistical Analyses	19
D- Quality Assurance Charts	22
E- Agency Forms	25
F- Report Quality Assurance Form	30

1.0 Introduction

Bio-Analytical Laboratories (BAL), Doyline, Louisiana conducted two 48-hour acute toxicity tests for Outfall 006 at El Dorado Chemical Company, El Dorado, Arkansas. The test organisms used were the fathead minnow, *Pimephales promelas* and the cladoceran, *Daphnia pulex*. The purpose of this study is to determine if an appropriately dilute effluent sample adversely affects the survival of the test organism. Toxicity is defined as a statistically significant difference at the 95 percent confidence level between the survival of the test organisms in the critical dilution (the effluent concentration representative of the proportion of effluent in the receiving water during critical low flow or critical mixing conditions) compared to the survival of the test organisms in the control. The test endpoints are the No-Observed-Effect-Concentration (NOEC), which is defined as the highest effluent concentration that is not statistically different from the control, and the 48-hour LC₅₀, the concentration in which 50 percent of the test organisms died.

2.0 Methods and Materials

2.1 Test Methods

All methods followed were according to the latest edition of "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms" (EPA-821-R-02-012), "Standard Methods for The Examination of Water and Wastewater. 20th Edition" (APHA 1998. Chemical results using this edition are listed in the report as SM 1997), and BAL's standard operating procedures.

2.2 Test Organisms

The fathead minnows were raised in-house and were approximately seven days old at test initiation. The minnows were acclimated to dilution water hardness prior to testing. The *Daphnia pulex* test organisms were also raised in-house at test temperature and were less than 24 hours old at test initiation. Forty-eight hour reference toxicant tests, using sodium chloride (NaCl), were conducted monthly in order to document organism sensitivity and demonstration of capability.

2.3 Dilution Water

Soft reconstituted water made per EPA guidelines was used as the dilution water and the control for the acute tests.

2.4 Test Concentrations

The test concentrations used in the fathead minnow test were 100.0, 75.0, 56.0, 45.0, 32.0 and 22.0 percent effluent and a reconstituted water control. Due to lack of available neonates, the test concentrations used in the *Daphnia pulex* test were 100.0 and 22.0 percent effluent and a reconstituted water control. The critical dilution was defined as 100.0 percent effluent. The tests were conducted using five replicates of eight animals each for a total of 40 animals per concentration.

2.5 Sample Collection

One sample of Outfall 006 was collected by El Dorado Chemical personnel on March 1, 2015. Upon completion of collection, the sample was packed in ice and delivered to the laboratory by BAL personnel. The temperature upon arrival was 0.2° Celsius.

2.6 Sample Preparation

Upon arrival, the sample was logged in, given an identification number and refrigerated unless needed. Prior to use, the sample was warmed to $25\pm1^{\circ}$ Celsius. The total residual chlorine level (SM4500-Cl D 1997) was measured with a Capital Controls^R amperometric titrator and recorded if present. The total ammonia level was measured using a HACH^R test strip. Dissolved oxygen (SM4500-O G 1997), pH (SM4500-H+B 1997) and conductivity (SM2510-B 1997) measurements were taken on the control and each test concentration at test initiation, at each renewal and at test termination. Alkalinity (SM2320-B 1997) and hardness (SM2340-C 1997) levels were measured on the control and the highest effluent concentration.

2.7 Monitoring of the Tests

The tests were run in a Precision^R dual controlled illuminated incubator at a temperature of $25\pm1^{\circ}$ Celsius. An AEMC^R data logger was used to monitor diurnal temperature throughout the testing period. Light cycle and intensity were recorded twice a month.

2.8 Data Analysis

The NOEC and LC₅₀ values values were obtained by approved EPA methods of analysis, using the ToxCalc statistical program.

3.0 Results and Discussion

The results of the tests can be found in Table 1. Significant differences in survival were not noted in the critical dilution in neither test after 48 hours of exposure (p=.05). The NOEC values for the tests was 100.0 percent effluent (p=.05). The 48-hour LC_{50} values could not be calculated because greater than 50.0 percent survival occurred in each effluent concentration. See Appendix C- Statistical Analyses, for more information.

Table 1: Results of the 48-hour Acute Definitive Toxicity Tests

Percent Effluent	P	ercent Surviyal
Test Organism	Pimephales promelas	Daphnia pulex
Control	100.0	100.0
22.0	97.5	100.0
32.0	97.5	
45.0	97.5	
56.0	97.5	
75.0	97.5	
100.0	97.5	100.0

The 48-hour reference toxicant test results indicated that the test organisms were within the respective sensitivity range. The graphs of the acute reference toxicant tests can be found in Appendix D.

4.0 Conclusions

The sample of Outfall 006 collected from El Dorado Chemical Company, El Dorado, Arkansas, on March 1, 2015, was not found to be lethally toxic to the fathead minnow test organisms nor the *Daphnia pulex* test organisms in the 100.0 percent critical dilution after 48 hours of exposure (p=.05). The 48-hour LC_{50} values could not be calculated because greater than 50.0 percent survival occurred in the effluent dilutions (p=.05).

5.0 References

- EPA, 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. EPA-821-R-02-012, Office of Water.
- EPA, 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications Under the National Pollutant Discharge Elimination System. EPA-833-R-00-003, Office of Wastewater Management.
- EPA, 2000. Method Guidance and Recommendations for Whole Effluent (WET) Testing. EPA-821-B-00-04, Office of Water
- APHA, 1998. Standard Methods for The Examination of Water and Wastewater. 20th Edition.

APPENDIX A CHAIN-OF-CUSTODY DOCUMENTS

Bio-Analytical Laboratories

3240 Spurgin Road Post Office Box 521 Doylina, LA 71023 (318) 746-2772 1-800-259-1246 Fax: (318) 745-2773

NELAP/LELAP 01975, ADEQ 88-0630, TCEQ T104704278

	<u> </u>													Lal	boratory Use Only:
Company: El Dorado Ch	emical Compar	ıy		Phone: (870) 863-1484			An	alysis	:						Project Number:
Address: 4500 Norwest	Ave., El Dorad	o, AR	7173	Fax: 1 (870) 863-7499			Chronic	Chroni	Acute	Acute	Acute Mysid	Acute	Fecal (X5660
Permit #: AR0000752/A	FIN 70-00040			Purchase Order:			c Ceriodaphnia	Chronic minnow	minnow(Acute Daphnia species	Mysid	Acute Ceriodaphnia	Fecal Coliform		Temp. upon arrival:
Sampler's Sig	nature/Printed	1.	Affil	. 0 1	DCL		aphnia	W	Acute minnow(fresh/marine)	species		bnia			Therm EGG/2
<u>Date Start</u> Date End	Time Start Time End	C	G	# and type of container	Sample Identific	cation			e)					Lab Control Number:	Preservative:* (below)
03.c1-2015	2160	x		6 half gallons	006	, o			х	х				C1059A	166
											_				
Relinquished	by/Affiliation:	 E	DCC		Date: 3/2/15	Time:	Red	eived	by/N	ffiliar	tion	25		Date: 3-2-/5	Time: 1115
Relinquished	by/Affiliation:				Date:	Time:	Rec	eived	by/A	ffiliat	tion:	^) *_		Date:	Time:
Relinquished	by/Affiliation:	·	2	R	Date: / 3/2/15	Time: 1350	Rec	ejved	by/A		ion.	Su	20	Date:	Time:
Method of Shi Comments:	ipment:	_ Lab		Bus Fed Ex	DHL _	UPS _		Clien	t	_Oth	ег	Trac	kiug #		
COC Rev. 3.0															į

APPENDIX B
RAW DATA SHEETS

Project#	χţ	5608	50									
Client: EDG	CC/E1	Dor	ado C	hem:	ical C	ompany						
Address: 4	500 N	orth	west.	Ave	El Do	rado AR	71731					
NPDES# <u>AR000</u>	00752		Outfa	11 <u>(</u>	<u>006</u>							
Technicians	s: <u>EG</u>	B/RC	/CR									
Test initia	ated:		Date	3/	3/15	Time_	3850					
Test termin Dissolved (pH Meter: Conductivit Amperometri	Oxyge cy Me	n Me ter:	ter: Mode Mode or: M	Mod l #0 l #	del # 1 Orion 2 Contro l #Fiso	YSI550A 230A+ ol Co.	Serial Seria Seria rter Se	al a	#015 #122	525 217	53 75539	766
Sample Initia ID# D.O. (mg/L and %)	M. F.	erate? inutes/ inal .O(mg/L %)	Chlor	ual ine	Dechlor inated? Amount?	Ammonia (NH3) mg/L	Salinity	Han		Alk ini	al- ty	Tech
C10592 9.7	16% Y	/10/8	b	01	NO	30	N/A	16	8.0	4	0.0	ECOS
10.4	48 Y/	15/80				1						1
			Dilut	ion	Mator	Inform	notion					
Dilution Water	ID#	Initia (mg/L	al D.O	Aera Minu		Total Residual Chlorine (mg/L)	Ammonia (NH3) mg/L	рН	Hard ness		Alkal- inity	Tech
Soft H2O	3 19 6	N	A					<u>न.</u> न	46.	δ	32.0	EOB
						Informa						
Test Species Inf	o.	ID#:	LIS- Ni	5	Species: ID# ROL	prometre	Spécies: ID#:			Sp ID	ecies:	
Age		-	1 hour	<u>5</u>		ays	· .			<u> </u>		
Test Container S	ize	301	. 1		250					_	- i	
Feeding: Type		Alo	ae/y	T	0 - 1 -	nia				\vdash		
Amount		20		9.00		ition	·					
Aeration?			NIA		, U	19						
Amount			1	_		1						
Condition of sur		660 R	c 3/5	15		00 3/5/	/ 15					
comments: J abbrevia	Due-t	0 10	ck o	Fa:	vaila	bleI	· Pule	LV	160	n	Hes,	an
abbrevia	bet	tee	st w	26	initi	ated	धि अ	3/2	5		•	

Project#_	X568	0								Te	st s	tart	ed:	Date	3/3/	15		Time,	154			
Client	EDC									Te	st e	nded	:	Date	3/5/	<u>/</u> /S		Time	143	5		
		001	9890	24ho 24ho 24ho	ur ur [: ur].	30 5.0	481 _ 481 _ 481	nour nour nour	52.0 143.	ma		2001	es <u>J</u>	6hou 6hou 6hou	1x	<u>=</u>		ID	# <u>45</u>	<u>-</u> N	5	
Test Dilution	Replicate	Test Salinity		# Liv				,		olved					рH				C	onduct	ivity	
010			0 hr	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
05	A	NIA	8	8	8			8.1	84/	gn			7.4	13/ 13/	7.4			1725	33/5	201		
	B		8	8	8												<u> </u>					
	C		8	8	8																	
	D		8	8	8																	
	E		8	8	8																	
92	A		8	8	8			8.1	8.3/ /8.3	8.2			7.2	1.7	7.3			297	3299 2299	315		
	B	1	8	8	S	·																
·	C		8	8	8																	
	D		8	8	ç							-	,									
	E		8	8	∞													<u> </u>				
	and the second s					wi films with			1772		1000			100					001			
	prerer	nemistry T newal/post	renew	al	_		,	EU2	IKC.	RC			EB	KG/ RC	RC			EBB	RC/ RC	RC		

Project#	X50	80								Te	st s	tart	ed:	Date	3/3/	15		Time	154	6		
	EDCC EDCC					,					st e			Date				Time	143	<u> </u>		
Sample Der Technician Time: Temperatu	scription_ n: re (°C):	Ohour FI Ohour 150 Ohour 38	B 12 20	24ho 24ho 24ho	ur ur! ur_3	RC 510 5-0	 _ 481 _ 481 _ 48h	nour_ nour_	PC 1439 25.0	Te: 72 72 72 72 72	st Si hour hour hour	peci		6hou	1.L	<u>X</u>		ID	# <u>L16</u>	<u>5</u> -N15	5 ·	
Test Dilution	Replicate	Test Salinity		# Liv				,		olved					рH				C	onduct	.ivity	
0/0	·		0 hr	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
100	A	NIA	8	8	8			8.0	6.1/ 8.0	8.1			7.1	7.1/2	7.1			734	103	713		
	B	1	8	8	8																	
	C		8	8	8																	
	D		8	8	8																	
	E		8	8	8																	
				. ~																		
										·			ż									
									·													
	prerer	iemistry T newal/post	ecn renew	al				68 6	KC.	RC			EOP	RY	RC			EB	PC/ RC	RC		

Project#_		680								Te	st s	tart	ed:	Date	3/3/I	≦	•	Time.	085	<u>O</u>			
Client	EDO		-4 -44				.			Te	st e	nded	l:	Date	3/5/	<u>5</u>		Time	134	<u>5</u>			
Sample De Technicia Time: Temperatu	scription n: re (°C):	Ohour_68 Ohour_24	9 80 15 15	24ho 24ho 24ho	ur_1 ur_1 ur_2	122 9.4	481 481 481	nour nour	RC 1345 25:0	Te: 72 72 72	st S hour hour hour		es	6hou	LOL	<u>ne</u>]	0e)_ID:	#BAC	<u> </u>	·		=1
Test Dilution	Replicate	Test Salinity		# Liv	e Org	anism	s	7.	Diss	olved	Oxyge	n			рH				C	onduct	i vi ty		
010			0 hr	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24 0	48	72	96	
05	A	NA	8	8	8			8.1	8.3	8.3			7.4	714	7.1		r	2. 5	189/5	118.0 A			
	B		8	8	8														e.	-38K			
	C		8	8	8																		
	D		8	8	8																		
	E		8	8	8												<u> </u>						
									2										301				
22	A		8	8	8			8.1	7.5 83	8.1			7,2	4.5	6.9		6	97	399	295			
	B		8	8	7								ļ					ļ			ļ		
	C	/	8	8	8	ļ				<u> </u>													┨
	D		8	8	8							,,					ļ	ļ	<u> </u>	ļ		<u> </u>	╢
	E		8	8	8																-		╢
\$ \$1 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		nemustry 1							U54				- 0					863	U \$2			:	
	prere	newal/post	renew	al				568	RC	RC			SP	AC.	RC			DOX	VRC.	RC			

5680 age 15 of :

Project#_	χ5	5680					_			Te	st s	tart	ed:	Date	3/3	15	•	Time	0850	٥		
5? - Dos	EDCC scription_ n: re (°C):	001	D 186 150 1-5	24ho 24ho 24ho	our to	CK 124	481 481 481	nour_ hour_ nour_	RC 1345 25.0	ma	a+ e	noai.	~ 1	Date 96hbu 96hou 96hou	Cor	15 <u>ne</u>	105	Time	# <u>8</u> #	<u>:</u> Yoa:	34T?	
Test Dilution	Replicate	Test Salinity		# Liv	e Orga	anism	В	7	Diss	olved	Oxyge	n			Hq	:			C/	onduct	:ivity	
0/6			0 hr	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
32	A	NA	8	8	8			6.8	1.5%	8.1			7.2	1.7	7.1			<i>151</i>	348	338		
	B		8	8	8	3/5/15																
	C		δ	8	8																	
	D		8	8	8																	
	Ð		8	8	8																ļ	
																			18			
45	A		8	8	8			8.2	A.5/	8.0			7.1	1.2	7,1	<u></u>		ماها	418	411		
	B		8	8	8																	
	C		8	8	7																	
	\mathcal{D}		8	8	8		<u> </u>					٠.										
	E		8	8	8															ļ	<u> </u>	
		iemstry T							- m					4-					W 657			
		newal/post		ral			•	EVE	00	RC			68	200	RC			200	RC	RC	<u> </u>	

Page 16 of 3

Project#	XE	080								Te	st st	tart	ed:	Date	3/3/ 3/5/	/ E		rime	<u>085</u>	'd 5		
Project#_ClientSample Des Technician Time: Temperatur	scription_ n: re (°C):	Ohour O Ohour O		24ho 24ho 24ho	ur_ ur_0	()2 424 5.4	481 481	nour nour nourg	00 134s 15.0	Te: Te: 72 72 72	st enst st Si shour shour hour	nded peci	: es_{	6hou	ON ir ir ir	eli E	<u>مح</u>	ID	# <u>BA</u>		લવાક 	
Test Dilution	Replicate	Test Salinity		# Liv	e Org	anism	s	7	Diss	olveđ	Oxyge	n			pH	[C	onduct	ivity	
010			0 hr	24	48	72	96	0	24	48	72	96	0	24	48	72	96		24	48	72	96
56	A	NA	8	8	8			8:3	7.7	1.9			1.2	1.7	7.1		L	90	119	463		
	B		8	8	8																	
·	C		8	7	7																	
	D		8	8	8														<u> </u>			
	E		8	B	8																	
		/							مع													
75	A		8	8	7			89	7 2.1	1.8			7.1	4.7	7.1		5	94	213	567		
	B		8	8	8																	
	C		8	8	8																	
	D_		8:	188	8								;									
	Ð			&	8																	
	. prere	iemistry T newal/post	ech renew	al				730	RC	RC			KS)	RC.	RC			B	RC	KC	,	

X5680 Page 17 of 31

Project#_	ΧĘ	0800								Tes	st st	tart			<u> </u>				<u> </u>			
Project# Client	EDCC									Tes	st e	nded	:	Date	3/5/i	<u> </u>	•	rime	1345	<u> </u>		
Sample Der Technician Time: Temperatur	scription n:	Ohour R Ohour Ok Ohour 24	`	24ho 24ho 24ho	ur_(ur <u>]</u> 2 ur <u>25</u>	124	481 481 48h	our_ our_		72 72 72			es	6hou 6hou 6hou	r		las	O_ID		_ oaa		
Test Dilution	Replicate	Test Salinity		# Liv	e Orga	anism	s		Diss	olved	Oxyge	n			PHq —				C	onduct	ivity	
0/0			0 hr	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
100	A	NIA	8	8	8			80	75,0	7.8			7.1	1.0	7.1		-	134	100	100		
	8	(8	8	1																	
	C		8	8	8																	
	D		8	8	8																	
	E		8	8	8					<u> </u>												
									L_,					<u> </u>								
									\angle	ļ										ļ		
																	ļ <u>.</u>			<u> </u>	ļ	
									<u>.</u>			•	,				<u> </u>	<u> </u>	<u> </u>	<u> </u>		
		nemistry l newal/post		al.				રાષ્ટ્ર	VEC	RC			as	VC	RC			ECED	C	PRC		

X5680 Page 18 of 31

APPENDIX C STATISTICAL ANALYSES

								YOORU
				Dap	hnid Acute To	est-48 Hr Survival		Page 20 of 31
Start Date:	3/3/2015		Test ID:	X5680DP		Sample ID:	AR0000752	
End Date:	3/5/2015		Lab ID:	ADEQ880	630	Sample Type:	EFF2-Industrial	
Sample Date:	3/2/2015	,	Protocol:	EPAAW02	2-EPA/821/R-0	2-01 Test Species:	DP-Daphnia pulex	
Comments:						•	•	
Conc-%	1	2	3	4	5	_		
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000			
22	1.0000	1.0000	1.0000	1.0000	1.0000			
100	1.0000	1.0000	1.0000	1.0000	1.0000			

			Tr	ansform:	Arcsin Sc	juare Root	Rank	1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	5			
22	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	5	27.50	18.00	
100	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	5	27.50	18.00	

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test Indicates nor	mal distribi	ution (p > 0)).05)		1	0.881		
Equality of variance cannot be co		•	•	•				
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	100	>100		1				
Treatments vs D-Control								

									YOUR
				A	cute Fish	Test-48 H	r Survival		Page 21 of 31
Start Date:	3/3/2015		Test ID:	X5680PP			Sample ID:	AR0000752	
End Date:	3/5/2015		Lab ID:	ADEQ880	630	5	Sample Type:	EFF2-Industrial	
Sample Date:	3/2/2015		Protocol:	EPAAW02	2-EPA/821	1/R-02-01 T	est Species:	PP-Pimephales	promelas
Comments:							•		
Conc-%	1	2	3	4	5				
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000				
22	1.0000	0.8750	1.0000	1.0000	1.0000				
32	1.0000	0.8750	1.0000	1.0000	1.0000				
45	1.0000	1.0000	0.8750	1.0000	1.0000				
56	1.0000	1.0000	0.8750	1.0000	1.0000				
75	0.8750	1.0000	1.0000	1.0000	1.0000				
100	1.0000	0.8750	1.0000	1.0000	1.0000				

			Tra	ansform:	Arcsin Sc	quare Root	t .	Rank	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	5			•
22	0.9750	0.9750	1.3564	1.2094	1.3931	6.055	5	25.00	16.00	
32	0.9750	0.9750	1.3564	1.2094	1.3931	6.055	5	25.00	16.00	
45	0.9750	0.9750	1.3564	1.2094	1.3931	6.055	5	25.00	16.00	
56	0.9750	0.9750	1.3564	1.2094	1.3931	6.055	5	25.00	16.00	
75	0.9750	0.9750	1.3564	1.2094	1.3931	6.055	5	25.00	16.00	
100	0.9750	0.9750	1.3564	1.2094	1.3931	6.055	5	25.00	16.00	

Auxiliary Tests				Statistic	Critical	Skew	Kurt	
Shapiro-Wilk's Test indicates nor	-normal di	stribution (0.54743	0.934	-1.6937	1.1108	
Equality of variance cannot be co		`						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	100	>100		1				
Treatments vs D-Control								

APPENDIX D
QUALITY ASSURANCE CHARTS

2015 48-HOUR ACUTE REFERENCE TOXICANT TEST RESULTS USING DAPHNIA PULEX

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
09/05/13	1.9200					
10/01/13	2.2400	2.0800	1.8537	.1.6275	2.3063	2.5325
11/13/13	2.4500	2.2033	1.9364	1.6695	2.4702	2.7371
12/17/13	1.2100	1.9550	1.4126	0.8703	2.4974	3.0397
01/07/14	2.7400	2.1120	1.5256	0.9392	2.6984	3.2848
02/04/14	1.7400	2.0500	1.5040	0.9579	2.5960	3.1421
03/05/14	2.3000	2.0857	1.5784	1.0710	2.5931	3.1004
04/01/14	2.4300	2.1288	1.6435	1.1583	2.6140	3.0992
05/07/14	1.8900	2.1022	1.6414	1.1806	2.5630	3.0238
07/16/14	1.8800	2.0800	1.6399	1.1998	2.5201	2,9602
07/30/14	2.4200	2.1109	1.6810	1.2511	2.5408	2.9707
08/13/14	2.3000	2.1267	1.7131	1.2996	2.5402	2.9537
08/19/14	2.0100	2.1177	1.7204	1.3232	2.5149	2.9122
09/03/14	2.3500	2.1343	1.7476	1.3609	2.5210	2.9076
10/01/14	2.1400	2.1347	1.7621	1.3894	2.5073	2.8799
11/04/14	1.6200	2.1025	1.7202	1.3379	2.4848	2.8671
12/02/14	1.1200	2.0447	1.6045	1.1643	2.4849	2.9251
01/21/15	1.7500	2.0283	1.5957	1.1630	2.4610	2.8937
02/03/15	1.7100	2.0116	1.5848	1.1580	2.4384	2.8652
03/10/15	1.8700	2.0045	1.5879	1.1713	2.4211	2.8377

2015 48-HOUR ACUTE REFERENCE TOXICANT TEST RESULTS USING PIMEPHALES PROMELAS

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
08/09/13	6.0000					
09/03/13	5.9200	5.9600	5.9034	5.8469	6.0166	6.0731
10/01/13	5.9200	5.9467	5.9005	5.8543	5.9929	6.0390
11/06/13	6.7500	6.1475	5.7441	5.3406	6.5509	6.9544
12/04/13	5.8100	6:0800	5.6994	5.3188	6.4606	6.8412
01/07/14	5.4000	5.9667	5.5274	5.0882	6.4059	6.8452
02/04/14	7.8200	6.2314	5.4243	4.6171	7.0386	7.8457
03/05/14	6.7500	6.2963	5.5268	4.7574	7.0657	7.8351
04/02/14	5.8600	6.2478	5.5135	4.7792	6.9821	7.7163
05/06/14	5.8600	6.2090	5.5059	4.8029	6.9121	7.6151
06/05/14	7.3100	6.3091	5.5641	4.8190	7.0541	7.7992
07/08/14	6.3700	6.3142	5.6036	4.8930	7.0247	7.7353
08/05/14	5.9200	6.2838	5.5948	4.9057	6.9729	7.6619
09/02/14	7.4800	6.3693	5.6341	4.8990	7.1045	7.8396
10/01/14	6.2800	6.3633	5.6545	4.9457	7.0721	7.7809
11/04/14	5.8100	6.3288	5.6302	4.9316	7.0273	7.7259
12/02/14	12.5000	6.6918	5.0493	3.4068	8.3343	9.9768
01/21/15	6.8500	6.7006	5.1067	3.5128	8.2944	9.8883
02/10/15	6.4200	6.6858	5.1355	3.5851	8.2361	9.7864
03/10/15	7.4800	6.7255	5.2061	3.6867	8.2449	9.7643

APPENDIX E AGENCY FORMS

Acute Forms Daphnia pulex Survival

Permittee: El Dorado Chemical - Outfall 006

NPDES Permit Number: AR0000752/ AFIN 70-00040

Composite Collected

From: 3/01/15

To: 3/01/15

From:

To:

Test Initiated: 3/03/15

Dilution Water Used:

Receiving Water

X Reconstituted Water

Dilution Series Results - Percent Survival

Didution Series Results - 1 ercent Sur vivar											
TIME OF READING	REP	Ô	22.0	100.0							
24-hour	A	100.0	100.0	100.0							
	В	100.0	100.0	100.0							
	С	100.0	100.0	100.0							
	D	100.0	100.0	100.0							
	E	100.0	100.0	100.0							
48-hour	A	100.0	100.0	100.0							
	В	100.0	100.0	100.0							
	С	100.0	100.0	100.0							
	D	100.0	100.0	100.0							
	E	100.0	100.0	100.0							
	Mean	100.0	100.0	100.0							

- 1. Dunnett's Procedure or Steel's Many-One Rank Test as appropriate: Is the mean survival at 48 hours significantly different (p=.05) than the control survival for the % effluent corresponding to:
- a.) LOW FLOW OR CRITICAL DILUTION (100.0%)

YES YES X NO NO

b.)½ LOW FLOW OR 2X CRITICAL DILUTION (N/A%)

2. Enter percent effluent corresponding to the LC₅₀ below:

 $LC_{50} =$

N/A% effluent

95 % confidence limits:

Method of LC₅₀ calculation:

3. If you answered NO to 1.a) enter (P) otherwise enter (F) P

- 4. Enter response to item 3 on DMR Form, parameter TEM3D
- 5. If you answered NO to 1.b) enter (P) otherwise enter (F): N/A
- 6. Enter response to item 5 on DMR Form, parameter TFM3D

Biomonitoring Daphnia pulex 48 hour Acute Static Renewal Chemical Parameters Chart*

Permittee: El Dorado Chemical - Outfall 006 NPDES Number: AR0000752/ AFIN 70-00040

Contact: David Sartain Analyst: Briggs, Callahan

Sample Collected

From:

To:

Date 3/01/15

Time 0900

Test Begin

Date 3/01/15 Date 3/03/15 Time 2100 Time 1540

Test End

Date 3/05/15 Time 1435

		2 001 2020					77 007 20								
Parameter		D.O.			Cemperatur	e		Alkalinity			Hardness			pН	
Dilut/Time	Ohrs.	24hrs	48hrs	0hrs	24hrs	48hrs	Ohrs	24hrs	48hrs	Ohrs	24hrs	48hrs	0hrs	24hrs	48hrs
0	8.1	8.3	8.2	25.0	25.0	25.0	32.0			40.0			7.4	7.4	7.4
22.0	8.1	8.3	8.2	25.0	25.0	25.0							7.2	7.2	7.3
100.0	8.0	8.0	8.1	25.0	25.0	25.0	40.0			168.0			7.1	7.2	7.1
- · · · ·					<u> </u>										

^{*}This Form is to be submitted with each DMR.

Alkalinity and hardness to be reported as mg/I CaCO₃

Acute Forms Pimephales promelas Survival

Permittee: El Dorado Chemical - Outfall 006

NPDES Permit Number: AR0000752/ AFIN 70-00040

Composite Collected

From: 3/01/15

To: 3/01/15

From:

To:

Test Initiated: 3/03/15

Dilution Water Used:

Receiving Water

X Reconstituted Water

Dilution Series Results - Percent Survival

<u> </u>	uuon Sei	Tes Vesi	IIIS - FE	reent St	II VI VALI			
TIME OF READING	REP	0	22.0	32.0	45.0	56.0	75.0	100.0
24-hour	A	100.0	100.0	100.0	0.001	100.0	100.0	100.0
	В	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	С	100.0	100.0	100.0	100.0	87.5	100.0	100.0
	D	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	E	100.0	100.0	100.0	100.0	100.0	100.0	100.0
48-hour	A	100.0	100.0	100.0	100.0	100.0	87.5	100.0
	В	100.0	87.5	87.5	100.0	100.0	100.0	87.5
	С	100.0	100.0	100.0	87.5	87.5	100.0	100.0
	D	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	E	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Mean	100.0	97.5	97.5	97.5	97.5	97.5	97.5

1. Dunnett's Procedure or Steel's Many-One Rank Test as appropriate: Is the mean survival at 48 hours significantly different (p=.05) than the control survival for the % effluent corresponding to:

a.) LOW FLOW OR CRITICAL DILUTION (100.0%)

X NO YES

b.)½ LOW FLOW OR 2X CRITICAL DILUTION (N/A%)

YES

NO

2. Enter percent effluent corresponding to the LC₅₀ below:

 $LC_{50} =$

N/A% effluent

95 % confidence limits:

Method of LC₅₀ calculation:

- 3. If you answered NO to 1.a) enter (P) otherwise enter (F) P
- 4. Enter response to item 3 on DMR Form, parameter TEM3D
- 5. If you answered NO to 1.b) enter (P) otherwise enter (F): N/A
- 6. Enter response to item 5 on DMR Form, parameter TFM3D

Biomonitoring Pimephales promelas 48 hour Acute Static Renewal Chemical Parameters Chart*

Permittee: El Dorado Chemical - Outfall 006 NPDES Number: AR0000752/ AFIN 70-00040

Contact: David Sartain

Analyst: Briggs, Callahan, Rose

Sample Collected

From:

Date 3/01/15

Time 0900

To:

Date 3/01/15

Time 2100

Test Begin Test End

Date 3/03/15

Time 0850

Date 3/05/15

Time 1345

Parameter		D.O.			lemperatun			Alkalinity			Hardness			рH	
Dilut/Time	Ohrs.	24hrs	48hrs	Ohrs	24hrs	48brs	Ohrs	24hrs	48hrs	Ohrs	24hrs	48hrs	Ohrs	24hrs	48hrs
0	8.1	8.3	8.2	24.5	25.4	25.0	32.0			40.0			7.4	7.4	7.1
22.0	8.1	8.3	8.1	24.5	25.4	25.0							7.2	7.2	6.9
32.0	8.2	8.3	8.1	24.5	25.4	25.0							7.2	7.3	7.1
45.0	8.2	8.2	8.0	24.5	25.4	25.0							7.1	7.2	7.1
56.0	8.2	8.1	7.9	24_5	25.4	25.0	-						7.2	7.2	7.1
75.0	8.2	8.1	7.8	24.5	25.4	25.0							7.1	7.2	7.1
100.0	8.0	8.0	7.8	24.5	25.4	25.0	40.0			168.0			7.1	7.2	7.1

^{*}This Form is to be submitted with each DMR.

Alkalinity and hardness to be reported as mg/l CaCO₃

APPENDIX F REPORT QUALITY ASSURANCE FORM

Bio-Analytical Laboratories

3240 Spurgin Road Post Office Box 527 Doyline, LA 71023 (318) 745-2772 1-800-259-1246 Fax: (318) 745-2773

REPORT QUALITY ASSURANCE FORM Client: EIDOCOCO Chemical Coolo Project#: X5080 Chain of Custody Documents Checked by: 868 4-8-15 Technician/Date Raw Data Documents Checked by: 868 4-8-15 Technician/Date Statistical Analysis Package Checked by: 668 4-8-15 Quality Manager/Date Quality Control Data Checked by: 868 3-30-15 Quality Manager/Date Report Checked by: 668 4-8-15 Quality Manager/Date

I certify that this document was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. The information contained in this document, to the best of my knowledge, is true, accurate and complete.

Quality Manager

<u>4-8-15</u>

Date

No part of this work may be altered in any form or by any means without written permission from Bio-Analytical Laboratories.

Report Rev. 3.0

Bio-Analytical Laboratories (BAL) ADEQ#88-0630 Project X5681

Bio-Analytical Laboratories' Executive Summary

Permittee: El Dorado Chemical Company

P.O. Box 231

El Dorado, AR 71731

Project #: X5681

Outfall: Outfall 007 (contaminated storm water)

Permit #: AR0000752/ AFIN #70-00040

Contact: Mr. David Sartain Test Dates: March 3 - 5, 2015

Test Type: 48-hour acute toxicity test using *Pimephales promelas* (EPA 2000.0).

48-hour acute toxicity test using *Daphnia pulex* (EPA 2021.0)

Results:

For Pimephales promelas:

- 1. If the NOEC for survival is less than the critical dilution (100.0%), enter a "1"; otherwise, enter a "0" for Parameter No. TEM6C-1 Fail
- 2. Report the NOEC for survival, Parameter TOM6C 32.0%.
- 3. Report the highest (critical dilution or control) Coefficient of Variation, Parameter TQM6C 0.00%.

For Daphnia pulex:

- 1. If the NOEC for survival is less than the critical dilution (100.0%), enter a "1"; otherwise, enter a "0" for Parameter No. TEM3D- 1-Fail
- 2. Report the NOEC for survival, Parameter TOM3D 0.0%.
- 3. Report the highest (critical dilution or control) Coefficient of Variation, Parameter TQM3D 0.00%.
- -Due to lack of available neonates, this test was abbreviated.
- -Note: Increasing the pH from 3.9 to a range of 6.0-9.0, increased the survival in both tests, but not enough to not be statistically significantly different from the control.

This report contains a total of 34 pages, including this page. The results pertain only to the samples listed in the chain of custody documents in Appendix A. The information contained within meets the requirements set forth by ADEQ. The chemical data in this report is for monitoring purposes only and should not be reported on discharge monitoring reports.

Bio-Analytical Laboratories

3240 Spurgin Road Post Office Box 527 Doyline, LA 71023 (318) 745-2772 1-800-259-1246 Fax: (318) 745-2773

THE RESULTS OF TWO 48-HOUR ACUTE TOXICITY TESTS FOR OUTFALL 007 AT

EL DORADO CHEMICAL COMPANY El Dorado, Arkansas

> NPDES #AR0000752 AFIN #70-00040

EPA Methods 2000.0 and 2021.0

Project X5681

Test Dates: March 3 - 5, 2015 Report Date: April 8, 2015

Prepared for:

Mr. David Sartain El Dorado Chemical Company P.O. Box 231 El Dorado, AR 71731 Prepared by:

Ginger Briggs Bio-Analytical Laboratories P.O. Box 527 Doyline, LA 71023 ADEQ #88-0630

TABLE OF CONTENTS

TABLE OF CONTENTS	
1.0 Introduction	4
2.0 Methods and Materials	4
2.1 Test Methods	4
2.2 Test Organisms	4
2.3 Dilution Water	5
2.4 Test Concentrations	5
2.5 Sample Collection	5
2.6 Sample Preparation	5
2.7 Monitoring of the Tests	5
2.8 Data Analysis	6
3.0 Results and Discussion	6
4.0 Conclusions	7
5.0 References	8
Appendices	
A- Chain-of-Custody Documents	9
B- Raw Data Sheets	11
C- Statistical Analyses	20
D- Quality Assurance Charts	25
E- Agency Forms	28
F- Report Quality Assurance Form	33

1.0 Introduction

Bio-Analytical Laboratories (BAL), Doyline, Louisiana conducted two 48-hour acute toxicity tests for Outfall 007 at El Dorado Chemical Company, El Dorado, Arkansas. The test organisms used were the fathead minnow, *Pimephales promelas* and the cladoceran, *Daphnia pulex*. The purpose of this study is to determine if an appropriately dilute effluent sample adversely affects the survival of the test organism. Toxicity is defined as a statistically significant difference at the 95 percent confidence level between the survival of the test organisms in the critical dilution (the effluent concentration representative of the proportion of effluent in the receiving water during critical low flow or critical mixing conditions) compared to the survival of the test organisms in the control. The test endpoints are the No-Observed-Effect-Concentration (NOEC), which is defined as the highest effluent concentration that is not statistically different from the control, and the 48-hour LC₅₀, the concentration in which 50 percent of the test organisms died.

2.0 Methods and Materials

2.1 Test Methods

All methods followed were according to the latest edition of "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms" (EPA-821-R-02-012), "Standard Methods for The Examination of Water and Wastewater. 20th Edition" (APHA 1998. Chemical results using this edition are listed in the report as SM 1997), and BAL's standard operating procedures.

2.2 Test Organisms

The fathead minnows were raised in-house at test temperature and were approximately seven days old at test initiation. The minnows were acclimated to dilution water hardness prior to test initiation. The *Daphnia pulex* test organisms were also raised in-house at test temperature and were less than 24 hours old at test initiation. Forty-eight hour reference toxicant tests, using sodium chloride (NaCl), were conducted monthly in order to document organism sensitivity and demonstration of capability.

2.3 Dilution Water

Soft reconstituted water made per EPA guidelines was used as the dilution water and the control for the acute tests.

2.4 Test Concentrations

The test concentrations used in the fathead minnow test were 100.0, 75.0, 56.0, 50.0, 45.0, and 32.0 percent effluent and a reconstituted water control. Due to lack of available neonates, the test concentrations used in the *Daphnia pulex* test were 50.0 percent effluent and a reconstituted water control. The critical dilution was defined as 100.0 percent effluent. The tests were conducted using five replicates of eight animals each for a total of 40 animals per concentration.

2.5 Sample Collection

One sample of Outfall 007 was collected by El Dorado Chemical personnel on March 1, 2015. Upon completion of collection, the sample was packed in ice and delivered to the laboratory by BAL personnel. The temperature upon arrival was 0.4° Celsius.

2.6 Sample Preparation

Upon arrival, the sample was logged in, given an identification number and refrigerated unless needed. Prior to use, the sample was warmed to 25 ± 1^{0} Celsius. The total residual chlorine level (SM4500-Cl D 1997) was measured with a Capital Controls^R amperometric titrator and recorded if present. The total ammonia level was measured using a HACH^R test strip. An aliquot of the sample was adjusted from an initial pH of 3.9 to a pH range of 6.0-9.0. An extra 100.0 percent dilution was added to each test in order to document any lethality due to low pH. Dissolved oxygen (SM4500-O G 1997), pH (SM4500-H+ B 1997) and conductivity (SM2510-B 1997) measurements were taken on the control and each test concentration at test initiation, at each renewal and at test termination. Alkalinity (SM2320-B 1997) and hardness (SM2340-C 1997) levels were measured on the control and the highest effluent concentration.

2.7 Monitoring of the Tests

The tests were run in a Precision^R dual controlled illuminated incubator at a temperature of $25\pm1^{\circ}$ Celsius. An AEMC^R data logger was used to monitor diurnal temperature throughout the testing period. Light cycle and intensity were recorded twice a month.

2.8 Data Analysis

The NOEC and LC_{50} values values were obtained by approved EPA methods of analysis, using the ToxCalc statistical program.

3.0 Results and Discussion

The results of the tests can be found in Table 1. Significant differences in survival were noted in the critical dilution in both tests after 48 hours of exposure (p=.05). The NOEC for survival for the *Daphnia pulex* and the fathead minnow test was zero and 32.0 percent effluent, respectively (p=.05). The 48 hour LC_{50} value for the *Daphnia pulex* and the fathead minnow test was 26.32 and 37.95 percent, respectively (p=.05). Increasing the pH increased the survival rate in both tests, but not enough to not be significantly different from the control.

Table 1: Results of the 48-hour Acute Definitive Toxicity Tests

THE PARTY OF THE P	Rei	cent Survival
Test Organism	Pimephales promelas	Daphnia pulex
Control	100.0	100.0
32.0	100.0	
45.0	0.0	~~~~
50.0	0.0	5.0
56.0	0.0	
75.0	0.0	
100.0	0.0	
100.0 pH adjusted	77.5	67.5

The 48-hour reference toxicant test results indicated that the test organisms were within the respective sensitivity range. The graphs of the acute reference toxicant tests can be found in Appendix D.

4.0 Conclusions

The sample of Outfall 007 collected from El Dorado Chemical Company, El Dorado, Arkansas, on March 1, 2015, was found to be lethally toxic to the fathead minnow test organisms and the *Daphnia pulex* test organisms in the 100.0 percent critical dilution after 48 hours of exposure (p=.05). Increasing the pH reduced the lethal effect in both tests, but not significantly.

5.0 References

- EPA, 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. EPA-821-R-02-012, Office of Water.
- EPA, 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications Under the National Pollutant Discharge Elimination System. EPA-833-R-00-003, Office of Wastewater Management.
- EPA, 2000. Method Guidance and Recommendations for Whole Effluent (WET) Testing. EPA-821-B-00-04, Office of Water
- APHA, 1998. Standard Methods for The Examination of Water and Wastewater. 20th Edition.

APPENDIX A CHAIN-OF-CUSTODY DOCUMENTS

Bio-Analytical Laboratories

3240 Spurgin Road Post Office Box 527 Doyline, LA 71023 (318) 745-2772 1-800-259-1246 Fax: (318) 745-2773

NELAP/LELAP 01975, ADEQ 88-0630, TCEQ T104704278

												_		Lal	oratory Use Only:	
Company: El Dorado Ch	emical Compan	y	•	Phone: (870) 863-1484			An	alysis	:						Project Number:	
Address: 4500 Norwest	Ave., El Dorad		R 7173	Fax: 1 (870) 863-7499			Chroni	Chroni	Acute	Acute	Acute Mysid	Acute	Fecal (X5681	
Permit #: AR0000752/A	FIN 70-00040			Purchase Order:			Chronic Ceriodaphnia	Chronic minnow	minnow(Acute Daphnia species	Mysid	Acute Ceriodaphnia	Fecal Coliform		Temp. upon arrival:	
Sampler's Sig	nature/Printed	Nam Ed	e/Affi	liation: IL Pearson/	EDCC		aphnia	W	Acute minnow(fresh/marine)	species		hnia			Therms EGB3/2	#2
<u>Date Start</u> Date End	Time Start Time End	С	G	# and type of container	Sample Identifi	cation			e 					Lab Control Number:	Preservative: (below)	
3-01-2015	2130	x		6 half gallons	007				x	х				0.0593	10E	
			<u> </u>		-		_									
						11										
Relinquished	by/Affiliation:	/.	r EDL		Date: 3/2/15	Time:	Rea	ceived	d by/A 7	ffilia	tion:			Date:	Time:	
Relinquished	by/Affiliation:	/ /	<u> </u>	<u> </u>	Date:	lioD Time:	Re	ceived	l by/A	ffilia	ion:) °		Date:	///5 Time:	
_																
Relinquished	by/Affiliation:	f	1	Bis	Date: 3/1/5	Time: (350)	Rei	Elved	l by/A	afiliai	ion 8/	uď	2	Date:/ 3/2/15	Time: /350	
Method of Shi Comments:	ipment: 😢	Lab)	_Bus Fed Ex	DHIL _	UPS _		Clien	ıt	Oth	ner	Trac	/ king #			
COC Rev. 3.0)			,											•	İ

APPENDIX B RAW DATA SHEETS

Project#
Client: EDCC/El Dorado Chemical Company
Address: 4500 Northwest Ave El Dorado AR 71731
NPDES# <u>AR0000752</u> Outfall <u>007</u>
Technicians: <u>EGB/RC/CR</u>
Test initiated: Date $3/3/15$ Time 0935
Test terminated: Date 3/5/15 Time 440 Dissolved Oxygen Meter: Model # YSI550A Serial #06E2089 AV pH Meter: Model #Orion 230A+ Serial #015253 Conductivity Meter: Model # Control Co. Serial #80277924 Amperometric Titrator: Model #Fischer-Porter Serial #92W445766 Sample Information
Sample Initial Aerate? Total Residual Chlorine and %)
C10093 10.6 V110/78 <0.01 NO 6.0 N/A 308.0 0.0 EOB
136,3% 98,4%
Dilution Water Information
Dilution Water ID# Initial D.O Aerate? Total Ammonia pH Hard- Alkal- Tech (mg/L & %) (mg/L & %) Chlorine mg/L (mg/L)
Soft H20 3196 NA - 7.4 40.0 32.0 EOB
7.3 44.0 28.0 868
Test Species Information
Test Species Info. Species: Doulex Species: Species: Species: ID#: LIB-N15 ID#: ID#: ID#: ID#:
Age < 34hrs 1 days
Test Container Size 30m 050m Test volume 30m 300m
Feeding: Type Algae/YCT Artemia
Amount 33.0 hours before initiation
Aeration? N/A N/A
Amount
Condition of survivors RC 3/5/15 RC 3/5/15
Comments: Adjusted the PH from 4.2 to 6.0-9.0 using 1.00N NaOH Cole Parmer Lot 2014111102 els 3/3/15 Due to lack of available D. pulex neonates, an abbreviate Acutel Rev. 1.0 test was initiated EDB3/13/15
1 10 XIII Cala (Dominal) - 1 201/11/10 2 (1/3/2/15)
THE DE VICTOR RUMPTILDI QUITTITO OF OR OPPRENICH

Project#_							<u> </u>			Te	st si	tart	ed:	Date	3/3/	5	:		154			
Client E							 .			Те	st e	nded	:	Date	3/5	<u>/</u> 15	•	Time	140	₹0 - VI	5	
Sample Des Technicias	scription_ n:	Ohour?()	0	24ho	ur_	१८	481	nour_	RC.	Te.	st Si hour	peci	es	6hou		$\frac{1}{16x}$		ID:	# <u>}</u>	5-Ni		
Sample Des Technicias Time: Temperatus	re (°C):	Ohour 15 Ohour 30	40 2.0	24ho 24ho	ur_ ur_2	5.0 S.0	_ 481 _ 481			<u></u>	hour			6hou 6hou	ir		 _					
Test Dilution	Replicate	Test Salinity		# Liv	e Org	anism	B] ;	Diss	olved	Ожуде	n			рн	,					ivity	
010			0 hr	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
<i>0</i> s	А	NIA	8	8	8			8:5	8.9/	8.1			7.4	7.2/	7.3		ľ	3.2	3329	206		
	B		8	8	8	·										<u> </u>						
	C		8	8	8																	
	D		8	8	8																	
	E		8	8	8																	
32	А		8					8.1	X				7.0	X				435				
	B	1	8													VL	h			KY	1	
	C,		8		X	Y)	1				V	K				1	N			//		
	D		8									1	- 7									
	E	7	8					\										\				
		nemistry T newal/post		al				ER	& RC	PC			TS.	K/KC	RC			ESE	PC	pc		

X5681 Page 13 of 34

ACUTE2 Rev 1.0

BIO-ANALYTICAL LABORATORIES ACUTE TOXICITY TEST SURVIVAL AND WATER QUALITY DATA Test started: Date_3/15 Time 1540 Test ended: Date 3/5/15 Time/440

Test Species D. PUPX ID#L15-N/5 client EDCC Sample Description 007
Technician: Ohour9
 Technician:
 Ohour 1540
 24hour KC
 48hour RC
 72hour 7 96hour 96hour 96hour Conductivity Dissolved Oxygen pН # Live Organisms Replicate Test Test Salinity Dilution 72 96 24 48 96 010 24 72 24 72 96 48 72 96 48 24 48 8.4 541 46 45 AIN 8 8 50 0 0 \mathcal{D} 0

X5681 Page 14 of 34

Chemistry Tech prerenewal/postrenewal

Project#_	<u>X5</u>	681					_			те	st si	cart	ed:	Date <u></u>	5 [3]	15	ود	rime 3/5/1	15	40		
Client	EDC						<u> </u>			Те	st e	ıded	: _:	Date	315	[15		rime_	15	1440	<u>ر</u>	
Sample Des Technicias Time: Temperatus	n:	Ohour 5 Ohour 5 Ohour 35	~	24ho 24ho 24ho	ur_{ ur_5 ur_3	(C 530 5.0	48h _48h _48h	our_	RC 144 25.0	77	haur		5	6hou 6hou	נצ וצ			ID	<u> 445</u>	-/\ <u>\</u>	ン ・ 	
Test Dilution	Replicate	Test Salinity		# Liv				,			Oxyge				рН				C	onduct	ivity	
010			0 hr	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
100	A	NIA	ઠ					7.7					4.2					10a0	_			
	B		8				1				\mathcal{N}	<u> </u>					<u> </u>	\				
	C		8			//	M					IN					\leq	V /	<u> </u>			
	D	7	8																			
	E	}	8											`					7			
ONRO	A		8	8	4			81	13/9	80			7.7	8.8	7,8			062	1632	1086	<u> </u>	
7	B	(-	8	8	6																<u> </u>	
	C		8	6	5												<u> </u>					
	D		8	7_	5							· ·									<u> </u>	
	E	1	8	8	7																<u> </u>	
	prere	nemistry l newal/post	ech renew	al				a6	RC/RC	RC			ES	kc/	RC			EB	PC/ PR	ee		

Project#	72 72	1081								Te	st st	tart	ed: :	Date	3/3/	5	· •	rime.	093	క		
Client_E	DCC	-					_ 			Te	st ei	nded	:	Date	3/5/	15	•	rime_	140	Ø,		
Sample Des Techniciar Time: Temperatur	arintion		7	24ho 24ho 24ho	ur (ur 3	1/2 240	481 _481 _481	our our our	βς 14α 24.0	Te: 72 72 72	st Si hour hour hour	peci	es	6hou	On r_ r_	<u>ne</u>	QS	<u>></u> ID	14c #BA	L/o	534	15
Test Dilution	Replicate	Test Salinity		# Liv							Oxyge				рH				Co	onduct	ivity	
0/0		barrancy	0 hr	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24 . (5)	48	72	96
05	A	NIA	8	8	8			8.0	11.7 18.4	8.1			7,4	11-17 8674	7.0		r	3.2	10%	113,8		
	В		8	8	8								j	CSHI						Š		
	C		8	8	8																	
	Ð		8	8	8		·															
	E		8	8	8																	
																			10x			
32	A		8	8	8			8.1	8.5	8.3			7.0	67	6.6			35	135	431	<u> </u>	
	B		8	8	8																	
·	C_{-}		8	8	8										<u></u>							
	D		8	8	8								,									ļ
	E	(8	8	8																	ļ
																egyidani (e.			V 82)7			
And the second of the second o	c. prere	nemistry T newal/post	renew	ral				W)	Re	RC			ast.	OK RC	PC			EK.	RC	Ra		

Project#	X56	81					_			Te	st st	tart	ed:	Date <u></u>	3/3	ļs			<u> </u>			
Client	X56 EDC	Ċ.								Те	st ex	nded	:	Date	3/5	, צע		Time	140	<u>}</u>		
Sample Des Technicias Time: Temperatus	scription_ 1: re (°C):	Ohour Chour Ohour Ohour Ohour] [35] [15]	24ho 24ho 24ho	ur_(ur_15 ur_2	12 40 5.3	481 _ 481 _ 481	our_ our_	RC 140	Te: 72 72 1 72	st Si hour hour hour	peci	es	6hou	CON ir ir	ne)	<u>as</u>	, ID	# <i>BO</i> 4	<u>-</u> 0:	કરના	.S
Test Dilution	Replicate	Test Salinity		# Liv	e Orga	anism	s	;	Diss	olveđ	Oxyge	n.			Hq				C	onduct	ivity:	
010			0 hx	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
45	A	NIA	8	0	-			8.4	13.6				46	5. 4.6				541	238		ļ	
	B		8	0														<u> </u>			<u> </u>	
	C		8	0	-													<u> </u>				
	D.		8	0	_																<u>.</u>	
	£		8	D																		
		/							مدا					1	· .				- 10°			
50	A		8	0	1			8.4	285				45	4.5	_			719	512		ļ	
	B		8	0	_																<u> </u>	-
·	C		ઈ	0																ļ		
	D		ર્જ	0									i		ļ			<u> </u>				
	E	-)	8	0	_													<u> </u>			ļ	
																			110			
	cl	nemistry T newal/post	ech renew	al				ESS.	C/C	RC			ak	&c	RC			ast	VRC.	RC	<u> </u>	

Project#_	_ X50	081								Te	st si	tart	ed:	Date	3/3/1	25		Time	<u>093</u>	<u>5</u>		
Client	EDC	ン					- .			Te	st ei	nded	:	Date	3/5/L	<u>s</u> ~	100	Time	140	٥	- 4.	
Sample Des Technicias Time: Temperatus	scription_ n: re (°C):	Ohour Clohour Ohour A	1 35 5	24ho 24ho 24ho	ur 3	12 542 5.3	48h 48h 48h	our_ our_	RC 140 24.5	Te 72 72 72 72	st Si hour hour hour	peci	es	6hou 6hou	101 ir ir	<u>ne</u>	IUS)_ID	048)40 #80			-
Test Dilution	Replicate	Test Salinity		# Liv				,			Oxyge	n			рH				C	onduct	ivity	
010			pr 0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24 Li 2	48	72	96
56	A	N(A	8	٥				82	8.3	-			44	45				30				
	В		8	0	_																	ļ
	C		8	0													ļ					
	D		8	0	~													<u> </u>			<u> </u>	
	E		8	O	_													<u> </u>				
									4					لما				ļ	- W			
75	A		8	0				87	42				43	44	_		<u> </u>	194	16	<u> -</u>	<u> </u>	ļ
	8	/-	8	0	_					<u> </u>												
	C		8	0	_											<u> </u>					<u> </u>	
	D		8	0	<u> -</u>							··	<i>`</i>					<u> </u>			ļ	ļ
	E		8	0	_											_		 	<u> </u>		-	-
														שומו					 			
	. prere	nemistry i newal/post	renew	al				COG	R	RC			E130	RC	RC			600	Re	RC	<u> </u>	<u></u>

Project#_	XD	681								Tes	st si	tart	ed:	Date	<u> 3/3</u>	LIS	ı	Time	<u>() () 3</u>	<u>'</u> 5		
Client	EDC									Te	st ei	nded	.:	Date	3/s,	عيا		Time	NU	z ò		
	scription n:		7	24ho 24ho 24ho	ur_(ur_15 ur_2	12 540 5.3	481 481 481	nour_ nour_	RC 1400 249	Te: 72 72 72 72	st Sp hour hour hour	peci	es	6hou	(COY	me	105) ID			-	
Test Dilution	Replicate	Test Salinity		# Liv				,	Diss	olved	Oxyge	n			μg	[Co	onduct	ivity	
010			0 hr	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24 216	48	72	96
100	A	NIA	8	0				7.7	1:2				4.2	47	-		,	000	/	· •		
	B		8	ව	-																	
	C		8	0	_								ļ					ļ				
	D		8	0	_							<u> </u>						ļ				
	E)	8	0														ļ				
									1.3					9./ 19./					. 3	2		
100pH	А		8	8	7			8.1	10	7.9			7.7	18. P	7.8		/	062	1037	1053		
adj	B	(-	8	7	7																	
	C		8	7	6											<u> </u>					<u> </u>	
	D		8	8	6																	
	E	1	8	10	5																	
	prere	nemistry 1 newal/post	ecn renev	al				968	6	IRC.			æ	VOC.	RC			88°	VC.	R		
ACUTE2 Re	v 1.0	······						1	1/4				*************************************					33	5			. –

X5681 Page 19 of 34

APPENDIX C STATISTICAL ANALYSES

Start Date: 3/3/2015 Test ID: X5681DP Sample ID: AR0000752 End Date: 3/5/2015 Lab ID: ADEQ880630 Sample Type: EFF2-Industrial Sample Date: 3/2/2015 Protocol: EPAAW02-EPA/821/R-02-01 Test Species: DP-Daphnia pulex Comments: Conc-% 1 2 3 4 5 D-Control 1.0000 1.0000 1.0000 1.0000 50 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000									X5681
End Date: 3/5/2015					Dap	hnid Acute T	est-48 Hr Survival		Page 21 of 34
Sample Date: 3/2/2015 Protocol: EPAAW02-EPA/821/R-02-01 Test Species: DP-Daphnia pulex Conc-% 1 2 3 4 5 D-Control 1.0000 1.0000 1.0000 1.0000 50 0.2500 0.0000 0.0000 0.0000	Start Date:	3/3/2015		Test ID:	X5681DP		Sample ID:	AR0000752	
Comments: Conc-% 1 2 3 4 5 D-Control 1.0000 1.0000 1.0000 1.0000 50 0.2500 0.0000 0.0000 0.0000	End Date:	3/5/2015		Lab ID:	ADEQ880	630	Sample Type:	EFF2-Industrial	
Conc-% 1 2 3 4 5 D-Control 1.0000 1.0000 1.0000 1.0000 50 0.2500 0.0000 0.0000 0.0000	Sample Date:	3/2/2015		Protocol:	EPAAW02	2-EPA/821/R-0	02-01 Test Species:	DP-Daphnia pulex	
D-Control 1.0000 1.0000 1.0000 1.0000 50 0.2500 0.0000 0.0000 0.0000	Comments:								
50 0.2500 0.0000 0.0000 0.0000	Conc-%	1	2	3	4	5			
** ****** ****** ******	D-Control	1.0000	1.0000	1.0000	1.0000	1.0000			
100 PH	50	0.2500	0.0000	0.0000	0.0000	0.0000			
100711 0.0000 0.7000 0.0200 0.0700	100 PH	0.5000	0.7500	0.6250	0.6250	0.8750			

		_	Tra	ansform:	Arcsin Sc	quare Root	ì	Rank	1-Tailed
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical
D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	5		
*50	0.0500	0.0500	0.2469	0.1777	0.5236	62.654	5	15.00	18.00
*100 PH	0.6750	0.6750	0.9731	0.7854	1.2094	16.579	5	15.00	18.00

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)	0.82628	0.881	1.27578	1.82685
Equality of variance cannot be confirmed				
Hypothesis Test (1-tail, 0.05)				
Steel's Many-One Rank Test indicates significant differences				
Treatments vs D-Control				

								X5681			
Daphnid Acute Test-48 Hr Survival											
Start Date:	3/3/2015		Test ID:	X5681DP		Sample ID:	AR0000752				
End Date:	3/5/2015		Lab ID:	ADEQ880	630	Sample Type:	EFF2-Industrial				
Sample Date:	3/2/2015		Protocol:	EPAAW02	2-EPA/821/	R-02-01 Test Species:	DP-Daphnia pulex				
Comments:						•					
Сопс-%	1	2	3	4	5						
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000						
50	0.2500	0.0000	0.0000	0.0000	0.0000						
100 PH	0.5000	0.7500	0.6250	0.6250	0.8750						

			Tr	t	Isot	onic			
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Mean	N-Mean
D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	5	1.0000	1.0000
50	0.0500	0.0500	0.2469	0.1777	0.5236	62.654	5	0.0500	0.0500
100 PH	0.6750	0.6750	0.9731	0.7854	1.2094	16.579	5		

Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)	0.62485	0.842	2.51558 7.15179
Equality of variance cannot be confirmed	•		

			Linear Interpolation (200 Resamples						
Point	%	SD	95% CL	_(Exp)	Skew				
IC05*	2.632	0.133	2.421	3.127	0.8928				
IC10*	5.263	0.267	4.842	6.254	0.8928				
IC15*	7.895	0.400	7.263	9.381	0.8928	1.0			
IC20*	10.526	0.534	9.684	12.508	0.8928	201			
IC25*	13.158	0.667	12.105	15.635	0.8928	0.9			
IC40*	21.053	1.068	19.368	25.015	0.8928	0.8			
IC50*	26.316	1.335	24.211	31.269	0.8928	0.7			

^{*} indicates IC estimate less than the lowest concentration

	Acute Fish Test-48 Hr Survival							Page 23 of 34	
Start Date:	3/3/2015		Test ID:	X5681PP		Sample ID:	AR0000752		
End Date:	3/5/2015		Lab ID:	ADEQ880	630	Sample Type:	EFF2-Industrial		
Sample Date:	3/2/2015		Protocol:	EPAAW02	P-EPA/821/R-0	2-01 Test Species:	PP-Pimephales pr	omelas	
Comments:						•			
Conc-%	1	2	3	4	5		 		
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000				
32	1.0000	1.0000	1.0000	1.0000	1.0000				
45	0.0000	0.0000	0.0000	0.0000	0.0000				
50	0.0000	0.0000	0.0000	0.0000	0.0000				
56	0.0000	0.0000	0.0000	0.0000	0.0000				
75	0.0000	0.0000	0.0000	0.0000	0.0000				
100	0.0000	0.0000	0.0000	0.0000	0.0000				
100 PH	0.8750	0.8750	0.7500	0.7500	0.6250				

			Tra	Transform: Arcsin Square Root					1-Tailed	•
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	5			
32	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	5	27.50	16.00	
*45	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	5	15.00	16.00	
*50	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	5	15.00	16.00	
*56	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	5	15.00	16.00	
*75	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	5	15.00	16.00	
*100	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	5	15.00	16.00	
*100 PH	0.7750	0.7750	1.0850	0.9117	1.2094	11.644	5	15.00	16.00	

Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)	0.45994	0.94	-0.5933 12.2088
Equality of variance cannot be confirmed			

Equality of variance cannot be confirmed

Hypothesis Test (1-tail, 0.05)

Steel's Many-One Rank Test Indicates significant differences

Treatments vs D-Control

							X2081
		·		A	cute Fish Te	st-48 Hr Survival	Page 24 of 3
Start Date:	3/3/2015		Test ID:	X5681PP	, , , , , , , , , , , , , , , , , , , ,	Sample ID:	AR0000752
End Date:	3/5/2015		Lab ID:	ADEQ880	630	Sample Type:	EFF2-Industrial
Sample Date:	3/2/2015		Protocol:	EPAAW02	2-EPA/821/R-	02-01 Test Species:	PP-Pimephales promelas
Comments:						•	
Conc-%	1	2	3	4	5		
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000		
32	1.0000	1.0000	1.0000	1.0000	1.0000		
45	0.0000	0.0000	0.0000	0.0000	0.0000		
50	0.0000	0.0000	0.0000	0.0000	0.0000		
56	0.0000	0.0000	0.0000	0.0000	0.0000		
75	0.0000	0.0000	0.0000	0.0000	0.0000		
100	0.0000	0.0000	0.0000	0.0000	0.0000		
100 PH	0.8750	0.8750	0.7500	0.7500	0.6250		

			Tra		Number	Total				
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	-	Resp	Number
D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	5	·	0	40
32	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	5		0	40
45	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	5		40	40
50	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	5		40	40
56	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	5		40	40
75	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	5		40	40
100	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	5		40	40
100 PH	0.7750	0.7750	1.0850	0.9117	1.2094	11.644	5			

Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)	0.73334	0.881	-0.3897 3.54784
Figurality of variance cannot be confirmed			

Graphical Method

Trim	Level	EC50
	0.0%	37.947

37.947

APPENDIX D QUALITY ASSURANCE CHARTS

2015 48-HOUR ACUTE REFERENCE TOXICANT TEST RESULTS USING DAPHNIA PULEX

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
09/05/13	1.9200					
10/01/13	2.2400	2.0800	1.8537	,1.6275	2.3063	2.5325
11/13/13	2.4500	2.2033	1.9364	1.6695	2.4702	2.7371
12/17/13	1.2100	1.9550	1.4126	0.8703	2.4974	3.0397
01/07/14	2.7400	2.1120	1.5256	0.9392	2.6984	3.2848
02/04/14	1.7400	2.0500	1.5040	0.9579	2.5960	3.1421
03/05/14	2.3000	2.0857	1.5784	1.0710	2.5931	3.1004
04/01/14	2.4300	2.1288	1.6435	1.1583	2.6140	3.0992
05/07/14	1.8900	2.1022	1.6414	1.1806	2.5630	3.0238
07/16/14	1.8800	2.0800	1.6399	1.1998	2.5201	2.9602
07/30/14	2.4200	2.1109	1.6810	1.2511	2.5408	2.9707
08/13/14	2.3000	2.1267	1.7131	1.2996	2.5402	2.9537
08/19/14	2.0100	2.1177	1.7204	1.3232	2.5149	2.9122
09/03/14	2.3500	2.1343	1.7476	1.3609	2.5210	2.9076
10/01/14	2.1400	2.1347	1.7621	1.3894	2.5073	2.8799
11/04/14	1.6200	2.1025	1.7202	1.3379	2.4848	2.8671
12/02/14	1.1200	2.0447	1.6045	1.1643	2.4849	2.9251
01/21/15	1.7500	2.0283	1.5957	1.1630	2.4610	2.8937
02/03/15	1.7100	2.0116	1.5848	1.1580	2.4384	2.8652
03/10/15	1.8700	2.0045	1.5879	1.1713	2.4211	2.8377

2015 48-HOUR ACUTE REFERENCE TOXICANT TEST RESULTS USING PIMEPHALES PROMELAS

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
08/09/13	6.0000					
09/03/13	5.9200	5.9600	5.9034	5.8469	6.0166	6.0731
10/01/13	5.9200	5.9467	5.9005	5.8543	5.9929	6.0390
11/06/13	6.7500	6.1475	5.7441	5.3406	6.5509	6.9544
12/04/13	5.8100	6:0800	5.6994	5.3188	6.4606	6.8412
01/07/14	5.4000	5.9667	5.5274	5.0882	6.4059	6.8452
02/04/14	7.8200	6.2314	5.4243	4.6171	7.0386	7.8457
03/05/14	6.7500	6.2963	5.5268	4.7574	7.0657	7.8351
04/02/14	5.8600	6.2478	5.5135	4.7792	6.9821	7.7163
05/06/14	5.8600	6.2090	5.5059	4.8029	6.9121	7.6151
06/05/14	7.3100	6.3091	5.5641	4.8190	7.0541	7.7992
07/08/14	6.3700	6.3142	5.6036	4.8930	7.0247	7.7353
08/05/14	5.9200	6.2838	5.5948	4.9057	6.9729	7.6619
09/02/14	7.4800	6.3693	5.6341	4.8990	7.1045	7.8396
10/01/14	6.2800	6.3633	5.6545	4.9457	7.0721	7.7809
11/04/14	5.8100	6.3288	5.6302	4.9316	7.0273	7.7259
12/02/14	12.5000	6.6918	5.0493	3.4068	8.3343	9.9768
01/21/15	6.8500	6.7006	5.1067	3.5128	8.2944	9.8883
02/10/15	6.4200	6.6858	5.1355	3.5851	8.2361	9.7864
03/10/15	7.4800	6.7255	5.2061	3.6867	8.2449	9.7643

APPENDIX E AGENCY FORMS

Acute Forms Daphnia pulex Survival

Permittee: El Dorado Chemical - Outfall 007

NPDES Permit Number: AR0000752/ AFIN 70-00040

Composite Collected

From: 3/01/15

To: 3/01/15

From:

To:

Test Initiated: 3/03/15

Dilution Water Used:

Receiving Water

X Reconstituted Water

Dilution Series Results - Percent Survival

	uon Ser	ICS ICS	ulm - T	CICCIII	Dui VI	au		
TIME OF READING	REP	0	50.0	100.0 pH adj				
24-hour	A	100.0	100.0	100.0				
	В	100.0	75.0	100.0				
•	C	100.0	100.0	75.0				
	D	100.0	12.5	87.5				
	E	100.0	25.0	100.0				
48-hour	A	100.0	25.0	50.0				
	В	100.0	0.0	75.0				
	C	100.0	0.0	62.5				
	D	100.0	0.0	62.5				
	E	100.0	0.0	87.5				
	Mean	100.0	5.0	67.5				

- 1. Dunnett's Procedure or Steel's Many-One Rank Test as appropriate: Is the mean survival at 48 hours significantly different (p=.05) than the control survival for the % effluent corresponding to:
- a.) LOW FLOW OR CRITICAL DILUTION (100.0%) X YES NO b.)½ LOW FLOW OR 2X CRITICAL DILUTION (N/A%) YES NO
- 2. Enter percent effluent corresponding to the LC₅₀ below:

 $LC_{50} = 26.32\%$ effluent

95 % confidence limits: 31.27 - 24.21% Method of LC₅₀ calculation: Graphical

- 3. If you answered NO to 1.a) enter (P) otherwise enter (F): F
- 4. Enter response to item 3 on DMR Form, parameter TEM3D
- 5. If you answered NO to 1.b) enter (P) otherwise enter (F): N/A
- 6. Enter response to item 5 on DMR Form, parameter TFM3D

Adjusting the pH of the sample to neutral increased survival, but not enough to be significant when compared to the control.

Biomonitoring Daphnia pulex 48 hour Acute Static Renewal Chemical Parameters Chart*

Permittee: El Dorado Chemical - Outfall 007 NPDES Number: AR0000752/ AFIN 70-00040

Contact: David Sartain Analyst: Briggs, Callahan

Sample Collected

From: To:

Date 3/01/15

Time 0930 Date 3/01/15 Time 2130

Test Begin Test End

Date 3/03/15 Date 3/05/15

Time 1540 Time 1440

Parameter	D _i O _i			Temperature			Alkalinity			Hardness		pH			
Dilut/Time	Ohrs.	24hrs	48hrs	Ohrs	24hrs	48hrs	Ohrs	24hrs	48hrs	Ohrs	24hrs	* 4	Ohrs		48hrs
0	8.2	8.4	8.1	25.0	25.0	25.0	32.0			40.0			7.4	7.4	7.3
50.0	8.4	8.5	8.1	25.0	25.0	25.0							4.5	4.5	4.7
100.0 pH	8.1	7.9	8.0	25.0	25.0	25.0	0.0			308.0			7.7	8.8	7.8
															ļ
· · · · · · · · · · · · · · · · · · ·															
- T			<u> </u>	L							<u>L</u>		<u> </u>		<u> </u>

*This Form is to be submitted with each DMR.

Alkalinity and hardness to be reported as mg/l CaCO₃

Acute Forms <u>Pimephales promelas</u> Survival

Permittee: El Dorado Chemical - Outfall 007

NPDES Permit Number: AR0000752/ AFIN 70-00040

Composite Collected

From: 3/01/15

To: 3/01/15

From:

To:

Test Initiated: 3/03/15

Dilution Water Used:

Receiving Water

X Reconstituted Water

Dilution Series Results - Percent Survival

	uon sci	ICS ICC	uin i	CICCIII	Sui viv	ш			
TIME OF READING	REP	0	32.0	45:0	50.0	5 6.0	75.0	100.0	100.0 pH adj
24-hour	A	100.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
	В	100.0	100.0	0.0	0.0	0.0	0.0	0.0	87.5
	С	100.0	100.0	0.0	0.0	0.0	0.0	0.0	87.5
	D	100.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
	E	100.0	100.0	0.0	0.0	0.0	0.0	0.0	75.0
48-hour	A	100.0	100.0	0.0	0.0	0.0	0.0	0.0	87.5
•	В	100.0	100.0	0.0	0.0	0.0	0.0	0.0	87.5
	С	100.0	100.0	0.0	0.0	0.0	0.0	0.0	75.0
	D	100.0	100.0	0.0	0.0	0.0	0.0	0.0	75.0
	E	100.0	100.0	0.0	0.0	0.0	0.0	0.0	62.5
	Mean	100.0	100.0	0.0	0.0	0.0	0.0	0.0	77.5

1. Dunnett's Procedure or Steel's Many-One Rank Test as appropriate: Is the mean survival at 48 hours significantly different (p=.05) than the control survival for the % effluent corresponding to:

a.) LOW FLOW OR CRITICAL DILUTION (100.0%)

X YES

YES

b.)½ LOW FLOW OR 2X CRITICAL DILUTION (N/A%)

NO NO

2. Enter percent effluent corresponding to the LC_{50} below:

 $LC_{50} =$

37.95% effluent

95 % confidence limits: N/A

era lui a

Method of LC₅₀ calculation: Graphical 3. If you answered NO to 1.a) enter (P) otherwise enter (F): F

- 4. Enter response to item 3 on DMR Form, parameter TEM3D
- 5. If you answered NO to 1.b) enter (P) otherwise enter (F): N/A
- 6. Enter response to item 5 on DMR Form, parameter TFM3D

Adjusting the pH of the sample to neutral increased survival, but not enough to not be significant when compared to the control.

Biomonitoring Pimephales promelas 48 hour Acute Static Renewal Chemical Parameters Chart*

Permittee: El Dorado Chemical - Outfall 007 NPDES Number: AR0000752/ AFIN 70-00040

Contact: David Sartain

Analyst: Briggs, Callahan, Rose

Sample Collected

From: To: Date 3/01/15 Date 3/01/15

5 Time 0930 5 Time 2130

Test Begin Test End

Date 3/03/15 Date 3/05/15 Time 0935 Time 1400

Parameter		D:0.			l'emperatur			Alkalinity			Hardness			pН	
Dilut/Time	Ohrs.	24hrs	48hrs	Ohrs	24hrs		Ohrs	24hrs	48hrs	Ohrs	24hrs	48hrs	Ohrs	24hrs	48hrs
0	8.2	8.4	8.1	24.5	25.3	24.9	32.0			40.0			7.1	7.4	7.0
32.0	8.1	8.5	8.2	24.5	25.3	24.9							7.0	6.4	6.6
45.0	8.4	7.6		24.5	25.3						i		4.6	5.1	
50.0	8.4	7.6		24.5	25.3								4.5	4.7	
56.0	8.2	7.7		24.5	24.3								4.4	4.5	
75.0	8.1	7.7		24.5	24.3								4.3	4.4	
100.0	7.7	7.7		24.5	24.3		0.0			308.0			4.2	4.3	
100.0 pH	8.1	7.9	7.9	24.5	24.3	24.9							7.7	8.8	7.8

*This Form is to be submitted with each DMR.

Alkalinity and hardness to be reported as mg/l CaCO₃

APPENDIX F REPORT QUALITY ASSURANCE FORM

Bio-Analytical Laboratories

3240 Spungin Road Post Office Box 527 Doyline, LA 71023 (318) 745-2772 1-800-259-1246 Fax: (318) 745-2773

REPORT QUALITY ASSURANCE FORM

Client: 51Dorado Chemical 007
Project#: XFLOSI
Project#: X5681
Chain of Custody Documents Checked by: ECS 4-8-15 Technician/Date
Raw Data Documents Checked by: EOB 4-8-15
Technician/Date Statistical Analysis Package Checked by: 608/4-8-)5
Quality Manager/Date
Quality Control Data Checked by: \(\begin{aligned} ali
Report Checked by: 508/4-8-/5
Quality Manager/Date

I certify that this document was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. The information contained in this document, to the best of my knowledge, is true, accurate and complete.

Quality Manager

Sugget B5

4-8-15 Parts

No part of this work may be altered in any form or by any means without written permission from Bio-Analytical Laboratories.

Report Rev. 3.0

Ship Date: 24APR15

From: (870) 863-1403 David Sartain El Dorado Chemical Company 4500 NW Ave Origin ID: ELDA

Fedex a

El Dorado, AR 71730

J151215022303

SHIP TO: (501) 682-0744

BILL SENDER

Loretta Reiber P.E.

ADEQ - Permits BranchWater Divisio 5301 NORTHSHORE DR

NORTH LITTLE ROCK, AR 72118

Ref# Invoice# PO# Dept#

.

0201

7734 5150 6009

MON - 27 APR 10:30A PRIORITY OVERNIGHT

X2 LITA

72118 ar.us LIT

537J2/8FC5/EE4B

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.